Advancing the R&D of Mesoscale Nondestructive Characterization H. E. Martz, Jr., M. Aufderheide, A. Barty, J. Jackson, J. S. Kallman, B. Kozioziemski, W. Nederbragt, M. Pivovaroff, D. Schneberk October 15, 2004 #### **Disclaimer** This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. # Advancing the R&D of Mesoscale Nondestructive Characterization¹ Harry E. Martz, Jr., Maurice Aufderheide, Anton Barty, Jessie Jackson, Jeffrey S. Kallman, Bernard Kozioziemski, Walter Nederbragt, Michael Pivovaroff, and Daniel Schneberk UCRL-#, Lawrence Livermore National Laboratory, Livermore, CA 94550 # **Project overview** This Strategic Initiative (SI) will advance nondestructive characterization of mesoscale (millimeter-sized) objects—allowing micrometer resolution over the objects' entire volume. X-ray imaging will be developed that allows object characterization with materials that vary widely in composition, density, and geometry. # **Project goals** The overall goal is to research the science and engineering needed to nondestructively characterize and model mesoscale objects. The spatial resolution goal for this microscopy is roughly one cubic micrometer or better, while the contrast goal represents a signal-to-noise ratio of 1000:1. ### Relevance to the lab Mission This SI will enable the science and technology of phase- and amplitude-contrast modeling and object recovery. Specific LLNL programs that would benefit include development of novel sensors for NAI applications, study of explosive samples for DOD and DOE, high energy density physics, and inertial confinement fusion (ICF) experiments for the National Ignition Facility (NIF). #### **FY04** Accomplishments and Results We performed several types of modeling to better understand x-ray imaging of mesoscale objects. Characterization of the solid deuterium-tritium (D-T) fuel layer in an ICF capsule using a beryllium ablator requires phase-contrast imaging. We chose this as one example for our modeling work. We modeled projection imaging systems with a coherent parallel-beam and a point source, and a large-size source with a Wolter x-ray imaging optic (Figure 1). These studies showed that imaging was possible with either approach [Barty, et al. 2004] Objects with geometric and x-ray properties comparable to an ICF capsule were used in initial experimental tests of the modeling results. These objects were successfully imaged using LLNL's KCAT system, Xradia's uXCT, and ANL's Advanced Photon Source [Kozioziemski, et al. 2004]. KCAT successfully imaged both a D-T liquid/gas and solid/gas layer inside a beryllium capsule (Figure 2). ¹ This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. We examined whether it is necessary to use the multislice method to solve the paraxial wave equation to simulate x-ray microscopy of mesoscale objects or if ray tracing will suffice. Preliminary results reveal ray tracing was adequate for modeling the propagation of x-rays through mesoscale objects of interest.[Kallman, 2004] Additional modeling probed the imaging capability and limitations of a Wolter x-ray microscope system. This system was designed to characterize mesoscale objects to submicrometer spatial resolutions.[Nederbragt, 2004] A code has been developed to model the 2D image formation in a Wolter x-ray microscope.[Jackson, 2004] A series of simulations using various objects were run to study the effects of the optics, neglecting scattering and reflection losses (Figure 3). One Wolter 8-keV x-ray optic was fabricated for the microscope. Unfortunately, the mandrel did not meet the required specifications. However, two important achievements resulted from the fabrication effort. First, the team developed a framework and methodology for the construction of high precision optics for future efforts at LLNL (Figure 4). The second achievement was the demonstration of both a laterally- and depth-graded multilayer coating to maximize the throughput of the optic (Figure 5). ## **FY05 Proposed Work** The SI was terminated and has evolved into two LDRD ERs. One focuses on x-ray phase-effects characterization, the other on x-ray optics fabrication. ### **Related References** - Barty, A...(2004), "Phase contrast induced errors in micrometer-scale precision x-ray metrology," to be submitted to *J. of Nondestr. Eval.*, Lawrence Livermore National Laboratory, Livermore, CA. - Jackson, J. A., (2004), "Wolter X-ray Microscope Computed Tomography Ray-Trace Model with Preliminary Simulation Results," Lawrence Livermore National Laboratory, Livermore, CA, UCRL-TR-206864 - Kallman, J. (2004), "Is Multislice Necessary?" Lawrence Livermore National Laboratory, Livermore, CA, UCRL- - Kozioziemski, B.J., J.A. Koch, A. Barty, H. E. Martz, Wah-Kewat Lee and Kamel Fezzaa (2004), "Quantitative Characterization of Inertial Confinement Fusion Capsules Using Phase Contrast Enhanced X-Ray Imaging", submitted to *J. Appl. Phys.*, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-JRNL-205025. - Nederbragt, W. (2002), "Wölter Instrument-Optical Design," Lawrence Livermore National Laboratory, Livermore, CA, UCRL-ID-150702. Figure 1. A perfect Wolter optic microscope simulation of a D-T ice layer inside a Be capsule. Exit- to image-plane distances are labeled as Δz . The D-T ice gas layer is discernable for Δz of ≥ 0.5 um. Figure 2 KCAT projection radiographs of a 2-mm diameter Be ICF capsule filled with deuterium and tritium. These are the first images of D-T layers inside of Be capsules. Figure 3 Simulated images of a 45-um diameter spherical object with a number of spherical (0.5-not observed, 2.5, 4.5, and 6.5-um diameter) inclusions on the center plane of the sphere. Each inclusion is 180 times more attenuating than the surrounding sphere. The first image has the center plane of the spherical object on the focal plane of the instrument. The succeeding images are the results of translations of the object toward the camera along the instrument axis. Images 2-9 are each 0.5 um steps further from the focal plane (0.5 um to 4.5 um). The last five images are at 5, 10, 15, 20, 25 um distance from the focal plane. Figure 5: Measured reflectivity of the multilayer coating as a function of incident angle.